6. References

References

[1]T.L. Amundrud, H. Malling, and R.G. Ingram. Geometrical constraints on the evolution of ridged sea ice. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2003JC002251.
[2]K.C. Armour, C.M. Bitz, L. Thompson, and E.C. Hunke. Controls on Arctic sea ice from first-year and multi-year ice survivability. J. Climate, 24:2378–2390, 2011. URL: http://dx.doi.org/10.1175/2010JCLI3823.1.
[3]S.P.S. Arya. A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J. Geophys. Res., 80:3447–3454, 1975. URL: http://dx.doi.org/10.1029/JC080i024p03447.
[4]A. Assur. Composition of sea ice and its tensile strength. In Arctic sea ice; conference held at Easton, Maryland, February 24-27, 1958, volume 598, pages 106–138. Publs. Natl. Res. Coun. Wash., Washington, D.C., 1958.
[5]C.M. Bitz, M.M. Holland, M. Eby, and A.J. Weaver. Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res. Oceans, 106:2441–2463, 2001. URL: http://dx.doi.org/10.1029/1999JC000113.
[6]C.M. Bitz and W.H. Lipscomb. An energy-conserving thermodynamic sea ice model for climate study. J. Geophys. Res. Oceans, 104(C7):15669–15677, 1999. URL: http://dx.doi.org/10.1029/1999JC900100.
[7]B.P. Briegleb and B. Light. A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR Technical Note NCAR/TN-472+STR, National Center for Atmospheric Research, 2007. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/BL_NCAR2007.pdf.
[8]W. D. Collins and coauthors. The Community Climate System Model Version 3 (CCSM3). J. Climate, 19:2122–2143, 2006. URL: https://doi.org/10.1175/JCLI3761.1.
[9]P. Duarte and Coauthors. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results. J. Geophys. Res. Biogeo., 122:1632–1654, 2017. URL: http://dx.doi.org/10.1002/2016JG003660.
[10]E.E. Ebert, J.L. Schramm, and J.A. Curry. Disposition of solar radiation in sea ice and the upper ocean. J. Geophys. Res. Oceans, 100:15965–15975, 1995. URL: http://dx.doi.org/10.1029/95JC01672.
[11]H. Eicken, T.C. Grenfell, D.K. Perovich, J.A Richter-Menge, and K. Frey. Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2003JC001989.
[12]D.L. Feltham, N. Untersteiner, J.S. Wettlaufer, and M.G. Worster. Sea ice is a mushy layer. Geophys. Res. Lett., 2006. URL: http://dx.doi.org/10.1029/2006GL026290.
[13]G.M. Flato and W.D. Hibler. Ridging and strength in modeling the thickness distribution of Arctic sea ice. J. Geophys. Res. Oceans, 100:18611–18626, 1995. URL: http://dx.doi.org/10.1029/95JC02091.
[14]D. Flocco and D.L. Feltham. A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2006JC003836.
[15]D. Flocco, D.L. Feltham, and A.K. Turner. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. Oceans, 2010. URL: http://dx.doi.org/10.1029/2009JC005568.
[16]D. Flocco, D. Schroeder, D.L. Feltham, and E.C. Hunke. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J. Geophys. Res. Oceans, 2012. URL: http://dx.doi.org/10.1029/2012JC008195.
[17]National Centers for Environmental Information. World Ocean Atlas Version 2. Natl. Ocn. and Atm. Admin, 2013. URL: https://www.nodc.noaa.gov/OC5/woa13/.
[18]H.E. Garcia, R.A. Locarnini, T.P. Boyer, and J.I. Antonov. Nutrients (phosphate, nitrate, silicate). In World Ocean Atlas 2005, volume 4. NOAA Atlas NESDIS 64, NOAA, 2006.
[19]K.M. Golden, H. Eicken, A.L. Heaton, J. Miner, D.J. Pringle, and J. Zhu. Thermal evolution of permeability and microstructure in sea ice. Geophys. Res. Lett., 2007. URL: http://dx.doi.org/10.1029/2007GL030447.
[20]W.D. Hibler. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:817–846, 1979. URL: http://dx.doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.
[21]W.D. Hibler. Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108:1943–1973, 1980. URL: http://dx.doi.org/10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2.
[22]M.M. Holland, D.A. Bailey, B.P. Briegleb, B. Light, and E. Hunke. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25:1413–1430, 2012. URL: http://dx.doi.org/10.1175/JCLI-D-11-00078.1.
[23]E.C. Hunke and C.M. Bitz. Age characteristics in a multidecadal Arctic sea ice simulation. J. Geophys. Res. Oceans, 2009. URL: http://dx.doi.org/10.1029/2008JC005186.
[24]E.C. Hunke, D.A. Hebert, and O. Lecomte. Level-ice melt ponds in the Los Alamos Sea Ice Model, CICE. Ocean Modelling, 71:26–42, 2013. URL: http://dx.doi.org/10.1016/j.ocemod.2012.11.008.
[25]N. Jeffery and E.C. Hunke. Modeling the winter-spring transition of first-year ice in the western Weddell Sea. J. Geophys. Res. Oceans, 119:5891–5920, 2014. URL: http://dx.doi.org/10.1002/2013JC009634.
[26]N. Jeffery, E.C. Hunke, and S.M. Elliott. Modeling the transport of passive tracers in sea ice. J. Geophys. Res. Oceans, 116:2156–2202, 2011. URL: http://dx.doi.org/10.1029/2010JC006527.
[27]M. Jin, C. Deal, J. Wang, K.H. Shin, N. Tanaka, T.E. Whiteledge, S.H. Lee, and R.R. Gradinger. Controls of the landfast ice-ocean ecosystem offshore Barrow, Alaska. Ann. Glaciol., 44:63–72, 2006. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/JDWSTWLG06.pdf.
[28]R.E. Jordan, E.L. Andreas, and A.P. Makshtas. Heat budget of snow-covered sea ice at North Pole 4. J. Geophys. Res. Oceans, 104(C4):7785–7806, 1999. URL: http://dx.doi.org/10.1029/1999JC900011.
[29]B.G. Kauffman and W.G. Large. The CCSM coupler, version 5.0.1. 2002. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/KL_NCAR2002.pdf.
[30]R.W. Lindsay. Temporal variability of the energy balance of thick Arctic pack ice. J. Climate, 11:313–333, 1998. URL: https://doi.org/10.1175/1520-0442(1998)011<0313:TVOTEB>2.0.CO;2.
[31]W.H. Lipscomb. Modeling the Thickness Distribution of Arctic Sea Ice. Dept. of Atmospheric Sciences University of Washington, Seattle, 1998. PhD thesis. URL: http://hdl.handle.net/1773/10081.
[32]W.H. Lipscomb. Remapping the thickness distribution in sea ice models. J. Geophys. Res. Oceans, 106:13989–14000, 2001. URL: http://dx.doi.org/10.1029/2000JC000518.
[33]W.H. Lipscomb, E.C. Hunke, W. Maslowski, and J. Jakacki. Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2005JC003355.
[34]P. Lu, Z. Li, B. Cheng, and M. Leppäranta. A parametrization fo the ice-ocean drag coefficient. J. Geophys. Res. Oceans, 2011. URL: http://dx.doi.org/10.1029/2010JC006878.
[35]C. Lüpkes, V.M. Gryanik, J. Hartmann, and E.L. Andreas. A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J. Geophys. Res. Atmos., 2012. URL: http://dx.doi.org/10.1029/2012JD017630.
[36]G.A. Maykut. Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. Oceans, 87:7971–7984, 1982. URL: http://dx.doi.org/10.1029/JC087iC10p07971.
[37]G.A. Maykut and M.G. McPhee. Solar heating of the Arctic mixed layer. J. Geophys. Res. Oceans, 100:24691–24703, 1995. URL: http://dx.doi.org/10.1029/95JC02554.
[38]G.A. Maykut and D.K. Perovich. The role of shortwave radiation in the summer decay of a sea ice cover. J. Geophys. Res. Oceans, 92:7032–7044, 1987. URL: http://dx.doi.org/10.1029/JC092iC07p07032.
[39]G.A. Maykut and N. Untersteiner. Some results from a time dependent thermodynamic model of sea ice. J. Geophys. Res., 76:1550–1575, 1971. URL: http://dx.doi.org/10.1029/JC076i006p01550.
[40]D. Notz. Thermodynamic and Fluid-Dynamical Processes in Sea Ice. University of Cambridge, UK, 2005. PhD thesis. URL: http://ulmss-newton.lib.cam.ac.uk/vwebv/holdingsInfo?bibId=27224.
[41]N. Ono. Specific heat and heat of fusion of sea ice. In H. Oura, editor, Physics of Snow and Ice, volume I, pages 599–610. Institute of Low Temperature Science, Hokkaido, Japan, 1967.
[42]D.J. Pringle, H. Eicken, H.J. Trodahl, and L.G.E. Backstrom. Thermal conductivity of landfast Antarctic and Arctic sea ice. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2006JC003641.
[43]A.F. Roberts, A.P. Craig, W. Maslowski, R. Osinski, A.K. DuVivier, M. Hughes, B. Nijssen, J.J. Cassano, and M. Brunke. Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model. Ann. Glaciol., 56(69):211–228, 2015. URL: http://dx.doi.org/10.3189/2015AoG69A760.
[44]D.A. Rothrock. The energetics of plastic deformation of pack ice by ridging. J. Geophys. Res., 80:4514–4519, 1975. URL: http://dx.doi.org/10.1029/JC080i033p04514.
[45]S. Saha, S. Moorthi, X. Wu, J. Wang, and Coauthors. Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling. J. Climate, 27:2185–2208, 2014. URL: http://dx.doi.org/10.1175/JCLI-D-12-00823.1.
[46]W. Schwarzacher. Pack ice studies in the Arctic Ocean. J. Geophys. Res., 64:2357–2367, 1959. URL: http://dx.doi.org/10.1029/JZ064i012p02357.
[47]A.J. Semtner. A Model for the Thermodynamic Growth of Sea Ice in Numerical Investigations of Climate. J. Phys. Oceanogr., 6:379–389, 1976. URL: http://dx.doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.
[48]G. Siedler and H. Peters. Physical properties (general) of sea water. In Landolt-Börnstein: Numerical data and functional relationships in science and technology, New Series V/3a, pages 233–264. Springer, 1986.
[49]M. Steele. Sea ice melting and floe geometry in a simple ice-ocean model. J. Geophys. Res. Oceans, 97:17729–17738, 1992. URL: http://dx.doi.org/10.1029/92JC01755.
[50]P.D. Taylor and D.L. Feltham. A model of melt pond evolution on sea ice. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2004JC002361.
[51]A.S. Thorndike, D.A. Rothrock, G.A. Maykut, and R. Colony. The thickness distribution of sea ice. J. Geophys. Res., 80:4501–4513, 1975. URL: http://dx.doi.org/10.1029/JC080i033p04501.
[52]H.J. Trodahl, S.O.F. Wilkinson, M.J. McGuinness, and T.G. Haskeel. Thermal conductivity of sea ice: dependence on temperature and depth. Geophys. Res. Lett., 28:1279–1282, 2001. URL: http://dx.doi.org/10.1029/2000GL012088.
[53]M. Tsamados, D.L. Feltham, D. Schroeder, D. Flocco, S.L. Farrell, N.T. Kurtz, S.W. Laxon, and S. Bacon. Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J. Phys. Oceanogr., 44:1329–1353, 2014. URL: http://dx.doi.org/10.1175/JPO-D-13-0215.1.
[54]A.K. Turner, E.C. Hunke, and C.M. Bitz. Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling. J. Geophys. Res. Oceans, 118:2279–2294, 2013. URL: http://dx.doi.org/10.1002/jgrc.20171.
[55]N. Untersteiner. Calculations of temperature regime and heat budget of sea ice in the Central Arctic. J. Geophys. Res., 69:4755–4766, 1964. URL: http://dx.doi.org/10.1029/JZ069i022p04755.